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Diffusion–relaxation correlation in simple pore structures
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Abstract

The effects of independent encoding for relaxation and for diffusion using separate time and gradient dimensions are calculated for

spins diffusing in plane parallel and spherical pores with relaxing walls. Two-dimensional inverse Laplace transformation is used to

obtain computed ðD; T2Þmaps for both geometries, in the regime in which the dimensionless diffusion coefficient is less than unity and
the dimensionless relaxation parameter of order unity or greater. It is shown that there exist two distinct branches on the ðD; T2Þmaps,
onewith diffusion and relaxation strongly correlated andone inwhich the diffusion coefficients varywidely independently of relaxation.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The problem of restricted diffusion in simple pore

structures forms a paradigm for many practical appli-

cations of NMR in porous media, for example in oil well

logging, separation science, reactor technology, micro-

filtration, plant physiology, and biomedicine. The ori-
ginal platform for NMR analysis was provided in a

classic paper by Brownstein and Tarr [1] in which they

predicted multi-exponential relaxation for spins carried

by molecules undergoing restricted diffusion in a pore

with relaxing walls. In particular they solved this re-

laxation–diffusion problem for planar, cylindrical, and

spherical pores using eigen-mode expansions and ob-

tained exact analytic expressions for the amplitudes and
time constants of the multi-exponential relaxation. The

dimensionless parameter which defines the problem is

the ratio Ma=D0, where M is the wall relaxivity, a

characterizes the pore dimension, and D0 is the (unre-
stricted) self-diffusion coefficient of the fluid within the

pore. Brownstein and Tarr showed that the dominant

term in the spin relaxation was associated with a relax-

ation time which depends on the pore dimension as a=M
for Ma=D0 small and a2=D0 for Ma=D0 large. This
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behavior forms the basis of pore size analysis through

NMR relaxivity measurement. The primary mathemat-

ical tool for deriving a distribution of relaxation times

(and hence pore sizes) from multi-exponential signal

decay is inverse Laplace transformation [2–4].

During the last decade the effects of diffusion re-

striction in porous media have been studied using an-
other NMR method, the Pulsed Gradient Spin Echo

technique [5–10] in which the echo attenuation is mea-

sured as a function of gradient wavevector q and the

diffusive observation time D. At values of D sufficiently
large that many spin-bearing molecules reach the walls

ðD0D=a2 > 1Þ this ‘‘signal’’, Eðq;DÞ, exhibits coherence
phenomena in the q-domain reminiscent of diffraction

[10–16]. The problem is amenable to exact analytic so-
lution in the case of planar, cylindrical, and spherical

pores and expressions have been published [17] which

also take into account wall relaxation during the diffu-

sion encoding period.

In principle the relaxation response and the q-vector

response of the system are separable using an experi-

ment in which relaxation and diffusive effects are en-

coded in two independent dimensions on the same
NMR magnetization using classical two-dimensional

NMR methodology. The experiment consists in apply-

ing a Carr–Purcell–Meiboom–Gill pulse train (or an

inversion recovery period) in which the time over which
reserved.
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transverse (or longitudinal) relaxation occurs is varied,
followed (or preceded) immediately by a PGSE pulse

sequence in which the q-value is independently changed.

In the relaxation domain the appropriate data analysis is

inverse Laplace transformation. In the q-domain, either

Fourier transformation with respect to q can be used, in

which case the averaged propagator for displacement is

returned, or inverse Laplace transformation with respect

to q2 can be used, in which case a distribution of effective
diffusion coefficients is returned. The former approach

was taken by Britton et al. [18] who obtained a relaxa-

tion time-propagator map for water flowing in a porous

bead pack, while the latter was taken by Lee et al. [19]

and by H€uurlimann and Venkataramanan [20] who cal-
culated relaxation–diffusion maps for water in a porous

rock sample.

The double Laplace inversion technique used in the
H€uurlimann and Venkataramanan experiment was devel-
oped by Venkataramanan et al. [21] and first demon-

strated by Song et al. [22]. Because of the ill-posed nature

of themathematical problem associatedwith 1-DLaplace

inversion, the matter of 2-D inversion is especially deli-

cate. The solution by Venkataramanan et. al. [21] is ele-

gant. They reduced the size of the 2-Dmatrices associated

with the data sets and the inversion kernel using Singular
Value Decomposition, and then transformed the 2-D

matrices associated with the input and output data sets to

1-D vectors by consecutive ordering of the matrix rows or

columns. By this means they transformed the problem

back to a 1-D Non-Negative Least Squares (NNLS)

format, with large but manageable vector space dimen-

sions. This important development opens the way for a

wide range of new two-dimensional NMR experiments in
which independent multi-exponential processes are cor-

related. The present paper attempts to assist that process

by returning attention to the simplest of all possible

problems. In particular we seek to demonstrate here just

how relaxation–diffusion correlation is manifest in the

case of planar and spherical pores with relaxing walls.

Here we present analytic expressions for the two-di-

mensional echo amplitudes and show the relaxation–dif-
fusion maps which result over a range of values of the key

dimensionless parameters,Ma=D0 andD0D=a2. This work
is in the spirit of earlier papers [16,17] in which the one-

dimensional q-response was outlined. It will be apparent

in the analysis presented here that the relaxation–diffu-

sion behavior, in even the simplest of pore geometries, is

exceedingly complex. That complexity serves as a cau-

tionary reminder that we need a sound platform from
which to interpret behaviors exhibited in more general

porous media. But the complexity is also a source of po-

tentially rich information and we shall attempt to identify

some insights made possible by the separation of relaxa-

tion and diffusion along orthogonal dimensions. As a

precursor to that, we note that several authors have pre-

viously investigated the combined effect of PGSE and
relaxation encoding [18,23–25]. However, to our knowl-
edge, the application of 2-D Laplace inversion techniques

to the study of simple pore geometries is novel. Aswe shall

show, this 2-D approach is instructive in separating the

Brownstein–Tarr modes associated with wall relaxation.

Taking the simplest possible (and somewhat na€ııve)
perspective we point out the following interaction be-

tween the independent relaxation and PGSE encodings.

Wall relaxation preferentially attenuates signals from
spins near the walls whose relaxation is enhanced, thus

overemphasizing the spins at the interior for the PGSE

experiment. By contrast PGSE preferentially attenuates

signals from interior spins, whose diffusion is not im-

peded by the wall, thus overemphasizing the spins near

the walls in the relaxation experiment. This picture is

simplistic since it assumes a subdivision of populations

by volume, a process which is only meaningful for large
values of the relaxation parameter Ma=D0 and small
values of the diffusion parameter, D0D=a2. Nonetheless,
there is another sense in which we may wish to restrict

our attention to small values of the diffusion parameter.

As pointed out above, for D0D=a2 of order unity or
larger, diffraction effects become apparent in the PGSE

q-space dependence, thus rendering inverse Laplace

transformation meaningless. Indeed we will only ob-
serve an echo attenuation behavior describable by a

superposition of exponential decays where D0D=a2 is
small compared with unity. This condition can always

be achieved experimentally by making the diffusion en-

coding time D sufficiently short.
2. Theory

The basic NMR pulse sequence used to encode for

both spin relaxation and diffusion is shown in Fig. 1. We

choose, for convenience, to assume a prior encoding for
relaxation. The time order is not significant. We further

allow for relaxation during the PGSE encoding time, D.
The theoretical procedure is well described in an earlier

paper [17]. The first RF pulse generates an initial

transverse magnetization density, qðr; 0Þ, which is as-
sumed uniform through the pore. The subsequent be-

havior of that magnetization, qðr; tÞ, is governed by the
relaxation at the pore boundaries, by phase changes,
expði2pq � rÞ, introduced by the narrow gradient pulses
and by the molecular dynamics expressed through the

function, Psðrjr0; tÞ which describes the conditional

probability that a spin-bearing molecule at r migrates to

r0 after time t. The basic differential equation governing
Psðrjr0; tÞ is Ficks� law,
D0r02Ps ¼ oPs=ot; ð1Þ
where D0 is the molecular self-diffusion coefficient. Ps is
subject to a boundary condition for the case of relaxing

walls, namely



Fig. 1. NMR pulse sequence for two-dimensional encoding for relax-

ation and diffusion. The relaxation period is t ¼ 2ns for the preceding
CPMG sequence.
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D0n̂n � r0Ps þMPs ¼ 0; ð2Þ

where n̂n is the outward surface normal. Eqs. (1) and (2)

may be tackled via the standard eigenmode expansion

Psðrjr0; tÞ ¼
X1
n¼0
expð
kntÞunðrÞu�nðr0Þ; ð3Þ

where the unðr0Þ are an orthonormal set of solutions to the
Helmholtz equation parameterized by the eigenvalue kn.

We choose here to investigate the case of the planar
and spherical pore in the narrow gradient pulse ap-

proximation. The effect of finite width gradient pulses

may be easily incorporated using the matrix method

outlined in an earlier paper [26]. For the moment, and in

the interests of simplicity, we seek to elucidate this

simplest of all problems for two classical geometries.
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Eigenfunctions for the case of the planar and spherical
boundaries have been given earlier [17].

The echo attenuation expression derived from the

pulse sequence of Fig. 1 may be written

EDðq; tÞ ¼
Z Z

qðr; tÞPsðrjr0;DÞ exp½i2pq � ðr0 
 rÞ
drdr0;

ð4Þ

where qðr; tÞ reflects the spin relaxation taking place
over the relaxation encoding time, t and is given by

qðr0; tÞ ¼
Z

qðr; 0ÞPsðrjr0; tÞdr ð5Þ

with Psðrjr0; tÞ subject to Eq. (2). In general the two-di-
mensional experiment will allow for one q direction,

which we shall define by spatial coordinate z, so that Eq.

(4) is rewritten

EDðq; tÞ ¼
Z Z

qðz; tÞPsðzjz0;DÞ exp½i2pq � ðz0 
 zÞ
dzdz0:

ð6Þ

Note that the PGSE encode time, D, is considered fixed.
Of course, varying D and q while keeping t fixed or
varying D and t while keeping q fixed leads to different,
alternative, two-dimensional experiments. The expres-

sions that we derive are general and allow for analysis of

all three sets of experiments. For the planar pore case

the gradient is applied along the z-direction normal to a

pair of bounding planes and these relaxing planes are

separated by a distance 2a and placed at z ¼ �a. For the
spherical case the gradient of magnitude q is applied
along the polar axis of the spherical polar coordinate

frame. The relaxing boundary is at a radial distance

r ¼ a from the sphere center. The resulting expressions
for EDðq; tÞ are:
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Plane pore

where

nk;n tannk;n ¼Ma=D0 and fm cotfm ¼
Ma=D0: ð7bÞ
Fig. 2. Slices of two-dimensional echo attenuation function, EDðq; tÞ, at
constant q. Increasing bi-exponential character is apparent as qa

increases.
Spherical pore
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2.1. Diffusion–relaxation correlation

Of the three possible two-dimensional experiments,

ðq2; tÞ; ðD; q2Þ, and ðt;DÞ, only the first clearly separates
diffusion and relaxation effects and we shall limit our

attention to this experiment alone. We first focus on the

plane parallel pore of width 2a. Inspection of Eqs. (7a)
and (7b) shows that the effect of the relaxation encoding

is especially simple. The relaxation is multi-exponential

in time t, with relaxation time constants a2=D0n
2
k . The

amplitudes of these modes are qa-dependent. Note that

the nk=a are the wave-numbers for the eigen-modes de-
scribing the heterogeneous relaxation of the fluid within

the pore, and describe the spatial frequencies of these

eigen-modes. Exactly as in Brownstein–Tarr theory, the
slowest relaxation time corresponds to the principal

(longest wavelength) mode where k ¼ 0. For Ma=D0
small, n0 is ðMa=D0Þ1=2 and the dominant relaxation time
is simply a=M . For Ma=D0 large, n0 is p=2 and the
dominant relaxation time is a2=D0ðp=2Þ2. Note that n0
falls in the range 0–p=2, n1 in the range p–3p=2 and so on.
Hence, the slowest ðn0Þ and next fastest ðn1Þ relaxation
times are separated in magnitude by about a factor of 10.
By contrast the effect of diffusion encoding over

the PGSE time D is a little more complex. Through the
terms expð
D0nn2D=a2Þ and expð
D0fm2D=a2Þ the
PGSE dependence on q is governed by the roots nn
which fall in the range 0–p=2, p–3p=2; . . . ; as well as by
the roots fm which fall in the range p=2–p, 3p=2–2p; . . .
By contrast, only the roots nk affect the relaxation which
occurs in the CPMG time domain, t. In the PGSE en-

coding the nk=a and fm=a play the role of wave-numbers
for the eigen-modes describing the heterogeneous dis-

placement of molecules within the pore.

Fig. 2 shows an example of a two-dimensional echo
attenuation function, EDðq; tÞ for the case Ma=D0 ¼ 5:0
and D0D=a2 ¼ 0:2, as slices in the qa planes. It is a
feature of Brownstein–Tarr relaxation (i.e., the case

q ¼ 0Þ that the principal mode dominates the relaxation,
so that multi-exponential character is seldom observed

in practice, except at very large values of Ma=D0. Even
at infinite Ma=D0 the amplitude of the principal (slowest
relaxation) n0 mode is nearly an order of magnitude
greater than the amplitude of the secondary (next fast-

est) n1 mode. One of the consequences of the combined
PGSE-CPMG experiment is that the higher order re-

laxation modes are greater emphasized, an effect which

is apparent in Fig. 2. As the parameter qa is increased

the bi-exponential character of the T2 relaxation be-
comes more obvious. Fig. 3 shows the relative ampli-

tudes, A1=A0 of the n1 and n0 relaxation modes, as a
function of qa. This figure demonstrates the utility of

combined PGSE-relaxation encoding in more clearly

revealing the higher order Brownstein–Tarr modes.

Note that the asymptote of A1=A0 at large qa is inde-
pendent of D0D=a2 and is determined solely by Ma=D0.
Our 2-D inverse Laplace analysis was performed with

software developed by us and based on the method

published by Ventkataramanan. In the case of the
spherical pore it is around 10
10 of the smallest input
value used. Machine errors were insignificant in deter-

mining transformation outcomes and the results shown



Fig. 4. Two-dimensional ðD; T2Þ map for the plane parallel pore, for
the case Ma=D0 ¼ 2 and D0D=a2 ¼ 0:2. Dvalues are expressed in units
of a2=D and T2 values in units of a2=D0. These maps were obtained by
suppressing the amplitude of the primary relaxation–diffusion mode of

by using a lower cutoff of ðqaÞ2 ¼ 0:15a2=D0D. The diagonal arrow
indicates the position of the primary relaxation–diffusion mode ob-

tained from the low-q data. The vertical arrow indicates D0 while the
horizontal arrow on the left indicates the position of the primary re-

laxation mode T2 ¼ a2=D0n
2
k .

Fig. 3. Ratio of the secondary and primary modes for relaxation, as a

function of 2pqa for two values of Ma=D0 ¼ 5 and Ma=D0 ¼ 0:5, for
the case D0D=a2 ¼ 0:2. Note the enhancement for the secondary re-
laxation mode as qa increases.
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here are robust under variations in eigenvalue trunca-

tion or stepsize effects. In carrying out a two-dimen-

sional inverse Laplace analysis of the EDðq; tÞ data, we
have chosen to deliberately de-emphasize the principal

diffusion–relaxation mode by using a lower ðqaÞ2 cutoff
value of approximately 0:15a2=ðD0DÞ The choice of
cutoff is not significant. It affects the relative amplitudes

of the modes, but not their corresponding ðD; T2Þ co-
ordinates in the 2-D plots that result from two-dimen-

sional inverse Laplace transformation.

Fig. 4 shows an example of a ðD; T2Þ map for the
plane parallel pore case, obtained for Ma=D0 ¼ 2 and
D0D=a2 ¼ 0:2. This was calculated using a 4012ðq2; tÞ
input data set and a 50� 40ðD; T2Þ domain. In accor-
dance with standard practice (3), regularisation was

adjusted to minimize v2 with maximum smoothing. As a
guide to Fig. 4, a number of arrows are used to indicate

ðD; T2Þ reference features. The diagonal arrow indicates
the position of the principal relaxation–diffusion feature

which dominates as qa > 0. The principal (slow) relax-
ation mode, T2 ¼ a2=D0n

2
0 is shown with a horizontal

arrow. Also shown, using a vertical arrow, is the free
diffusion value, D0.
Fig. 5 shows a set of ðD; T2Þ maps for the plane

parallel pore case, for values of Ma=D ranging from

0.5 to 10 and for D0D=a2 ¼ 0:1, 0.2, and 0.3. The same
data transformation conditions were used as for Fig.

4. Again the diagonal arrows indicate the position of

the relaxation–diffusion feature which dominates as

qa > 0 while the principal (slow) relaxation value,
T2 ¼ a2=D0n

2
0 is shown with a horizontal arrow, and a

vertical arrow, is used to indicate the free diffusion

values, D0. Also shown, using a horizontal arrow on
the right hand side of the graph, is the high Ma=D0
relaxation limit, T2 ¼ a2=D0ðp=2Þ2. These maps are
remarkably rich in features and show a wide spread of
diffusion and relaxation values, despite the simple ge-

ometry of the pore. Note that the restriction of

D0D=a2 to values less than 0.5 ensure that the curva-
ture of the echo attenuation data in q2-space remains
consistent with apparent multi-exponential decay. We

would emphasise that the choice of the maximum
value of q2 does not influence the position of the peaks
found in the D
 T2 domain, but only their relative
amplitude.

In interpreting these two-dimensional patterns, it is

important to recognize that these are maps in which

ðD; T2Þ features are separated in a wave-number do-
main, rather than in a spatial domain. The echo at-

tenuation data arise from a superposition of modes. In
converting the echo attenuation data to the Laplace

domain these modes tend to become separated and

identifiable. Note that the relaxation behavior at short

t and the diffusion behavior at short D are complete

mode sums, while the principal relaxation and diffusion

modes, with eigen-value n0, dominate in the long time
limits.

In the ðD; T2Þ maps the following features are ap-
parent:

(i) There exists a concentration of intensity in the region

where the diffusion value takes its unrestricted value

D0, and the relaxation has the principal (slow) mode
value a2=D0n

2
0. This feature moves to slower diffusion

as D0D=a2 increases, due to greater influence of wall
collisions. This region also corresponds to the posi-



Fig. 5. Two-dimensional ðD; T2Þ maps for the plane parallel pore, as a function of Ma=D0 and D0D=a2. D values are expressed in units of a2=D and T2
values in units of a2=D0. These maps were obtained by suppressing the amplitude of the primary relaxation–diffusion mode of by using a lower cutoff
of ðqaÞ2 ¼ 0:15a2=D0D. The diagonal arrow indicates the position of the primary relaxation–diffusion mode obtained from the low-q data. The
vertical arrow indicates D0 while the horizontal arrows on the left indicate the positions of the primary relaxation modes T2 ¼ a2=D0n

2
k . Horizontal

arrows on the right indicate the Brownstein–Tarr limit for Ma=D0 � 1, of T2 ¼ a2=D0ðp=2Þ2.
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tion of the diagonal arrow which indicates the domi-

nant ðD; T2Þ behavior.
(ii) There exists an isolated concentration of intensity at

D and T2 values about one order of magnitude
slower than D0 and faster than a2=D0n

2
0, respec-

tively. This feature increases in intensity as Ma=D0
increases.

(iii) There exists an isolated concentration of intensity at

D about one order of magnitude slower than D0 but
with T2 still at the slow mode value a2=D0n

2
0. This

feature decreases in intensity as Ma=D0 increases.
(iv) There exists a distinct diagonal grouping near the

dominant ðD ¼ D0; T2 ¼ a2=D0n
2
0Þ position in which

both D and T2 values are strongly correlated. We
note that the associated spread in T2 values is smal-
ler than the mode separation determined by the dif-

ferent n2k values.
Feature (i) represents the dominant 2-D mode and

corresponds to long wavelength, pore-averaged behav-

ior for both the diffusion and relaxation domains.

Feature (ii) represents a D and T2 mode with common
eigen-value n1. This mode correspondence arises from
the matching of the wave-vectors describing the initial

coordinates of the propagator, Ps, with those of the
spatial distribution of magnetization following the re-

laxation encoding. Since higher wave-number modes
arise from short-range features, they tend to reflect the

pore boundaries. The correlated ðD; T2Þmodes of feature
(ii) arise from pore surface relaxation behavior as well as

the diffusive perturbation associated with wall collisions.

The strengthening of feature (ii) with increasing Ma=D0
is consistent with the separability of the fluid into ‘‘wall’’

and ‘‘bulk’’ phases as Ma=D0 becomes large. To that
extent we may regard feature (ii) as being associated

with fluid near the surface.

Feature (iii) by contrast arises from reduced diffu-

sion but at the longest wavelength mode for relaxation.

Here the geometric restriction to diffusion is uncoupled

from the details of prior magnetisation distribution
caused by relaxation at the wall. The strengthening of

feature (iii) with decreasing Ma=D0 is consistent with
the indistinguishability of ‘‘wall’’ and ‘‘bulk’’ phases as

Ma=D0 becomes small. To that extend we may regard
feature (iii) as being associated with ‘‘pore-averaged’’

behavior.

Feature (iv) is especially intriguing because the spread

in relaxation times seen here lies between the Brown-
stein–Tarr modes, and is not predicted in a one-dimen-

sional relaxation encoding experiment. To some extent

this spread may arise from the ill-defined nature of the

inverse Laplace transformation. However the strong

correlation between diffusion and relaxation in feature
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(iv) suggests that this diagonal spread is physical in
origin. We attribute this effect to the subtle effects of

relaxation over the diffusive encoding time, noting that

the spread becomes more obvious as Ma=D0 increases.
Fig. 5 compares the same plots obtained in the case of

spherical pores of radius a. The features (i) to (iv) are

again apparent, thus suggesting that the precise details

of pore geometry are unimportant. In both the plane

parallel pore and the spherical pore, one is able to
identify separate ðD; T2Þ branches, one with diffusion
and relaxation strongly correlated and one with a wide

spread of D values weakly correlated with higher order

relaxation modes.

Finally we note that the method described here ap-

plies also to ðD; T1Þ correlations in which the CPMG
segment of the pulse sequence is replaced by an inver-

sion recovery sequence. By means of T1 encoding, wall
relaxation effects can be examined without the compli-

cating effects of dephasing caused by diamagnetic sus-

ceptibility inhomogeneity. The expressions derived in

this work apply equally well to such analyses.
3. Conclusions

In their recent paper H€uurlimann and Venkatarama-
nan [20] show D-relaxation maps for a mixture of dif-

ferent molecular weight oils in which diffusion and
Fig. 6. As for Fig. 6 but for spherical pores. The vertical arrow indicates D
primary relaxation modes T2 ¼ a2=D0n

2
k . Horizontal arrows on the right ind
relaxation are strongly correlated due to their respective
dependence on molecular size. They also demonstrate

that strong D-relaxation correlations exist in an inter-

connected porous medium with a wide distribution of

pore sizes. These correlations arise from the respective

dependence of apparent diffusion and relaxation on pore

size. In the present paper we show that diffusion and

relaxation for a single molecular species may be corre-

lated within a pore of unique size, simply because of the
eigen-mode structure of the solutions to the diffusion

equations that govern both phenomena.

Note that the ðD; T2Þ analyses presented here are
most relevant to the regime D0D=a2 �< 1 and

Ma=D0 >� 1. In practical terms, and for small molecule
(e.g. water) diffusion, this regime corresponds to pore

dimensions several tens of microns or larger. In such

systems the separability of diffusion and relaxation
correlations for spins confined to simple pore shapes

suggests the possibility of using ðD; T2Þ analysis to
separate near-wall and bulk behavior. These two-di-

mensional plots, obtained by inverse Laplace transfor-

mation, may prove of value in discriminating surface

and bulk fluid. We envisage particular applications to

porous media and mesophase systems where boundary

perturbations are of interest. The ðD; T2Þ correlations
may also prove of interest in the study of biological

cells, where cell wall transport plays an important role

(see Fig. 6).
0 while the horizontal arrows on the left indicate the positions of the

icate the Brownstein–Tarr limit for Ma=D0 � 1, of T2 ¼ a2=D0ðpÞ2.
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